2020 IRP INTERIM MODELING PROGRESS WORKSHOP APRIL 28, 2020

AGENDA

- INTRODUCTIONS & SAFETY MOMENT
- PROCESS UPDATE & WORK COMPLETED
- KEY ASSUMPTIONS & POLICY DRIVERS
 - Environmental
 - Electrification & Load Growth
 - Resource Strategies
- KEY MODELING SCENARIOS
- MODELING PLAN & STATUS UPDATE
 - Resource Screening Update
 - Initial Portfolio Study Update & Results Preview
- T&D AVOIDED COSTS METHODOLOGY UPDATE
- NEXT STEPS

PROCESS UPDATE & WORK COMPLETED

- Recap: Since the Summer/Fall of 2019, NSP has finalized the Terms of Reference, Scenarios & Modeling Plan, and Assumptions and has begun modeling work
- Stakeholder consultation and engagement continues to be a priority for the IRP team

KEY ASSUMPTIONS & POLICY DRIVERS

Environmental Policy

GHG Scenarios Coal Unit Retirements

Resource Strategies

Current Landscape Distributed Resources **Regional Integration**

Load Growth

Electrification Scenarios Demand Side Management

- NS Power has developed assumptions for all major inputs to the IRP model:
 - Financial

Environmental

Load

- Demand Response
- Demand Side Management
- Imports & Transmission

Supply Options

- Fuel Pricing
- Distributed Energy Resources Sustaining Capital
- Planning Reserve Margin
- Renewable Integration
- The comprehensive assumption set will allow the IRP to analyze the sensitivity of the resource plans to changes in assumptions, and build a series of key insights and signposts to monitor
- Stakeholder input incorporated into the development of the assumptions, scenarios, and modeling plan
- Written responses to over 160 individual questions and comments on these topics

ENVIRONMENTAL ASSUMPTIONS

- NS Power has developed three Greenhouse Gas scenarios which reflect potential future federal and provincial carbon policies
- The Net Zero 2050 and Accelerated Net Zero 2045 scenarios are both SDGA* compliant and represent different possible rates of decarbonization of the electricity sector
- Each scenario incorporates mandatory coal unit retirements by no later than 2030 or 2040; earlier retirement is possible if economic

^{*}Sustainable Development Goals Act (Nova Scotia)

ELECTRIFICATION & LOAD GROWTH

- A key driver for the IRP is the interplay of decarbonization and electrification in the Nova Scotia economy
- NS Power has developed a series of IRP load forecasts by combining four components:

- The E3 PATHWAYS study produced various electrification scenarios based on decarbonization of building and transportation energy use
- EfficiencyOne produced a series of DSM* scenarios via their 2019 DSM Potential Study
- The various combinations of these inputs produce the wide range of outcomes of Firm Peak Demand (MW) and Annual Energy (GWh) by the end of the IRP planning horizon:
 - Annual Energy: 9,000 14,300 GWh
 - Firm Peak Demand: 2,200 3,300 MW

^{*}Demand Side Management

RESOURCE STRATEGIES

Three resource strategies will be modeled to ensure the IRP examines a broad range of supply and demand side options;
 this will enable analyses of the value and cost deltas inherent in each of these approaches including sensitivities and interplay among the strategies

Current Landscape

Serve customer load and meet environmental requirements via inprovince supply and demand resources

Distributed Resources

Promote the uptake of Distributed Energy Resources (e.g. rooftop solar)

Regional Integration

New Transmission Interconnections enable access to energy and firm capacity resources outside of Nova Scotia

KEY MODELING SCENARIOS

- NS Power has identified key combinations of assumptions, policy drivers, and resource strategies to examine
- The first runs from these key scenarios are being run now as part of the Initial Portfolio Study

Comparator

- Not SDGA* compliant; Federal equivalency maintained & minimal CO₂ reductions post-2030
- Provides a basis for comparison of CO₂ policy options & enables model validation against previous studies (e.g. 2018 Generation Utilization & Optimization)

Net Zero 2050

- SDGA compliant; will test key combinations of electrification and DSM scenarios against all three resource strategies
- Base case for sensitivity analysis in the IRP (e.g. fuel prices, capital costs, etc.)

Accelerated Net Zero 2045

- SDGA compliant; allows testing of more aggressive assumptions for GHG reductions and coal generation retirements; potential for absolute zero CO₂ emissions by 2050
- Represents feedback from several stakeholder groups

*Sustainable Development Goals Act (Nova Scotia)

KEY MODELING SCENARIOS

Scenario	Features	Load Drivers	Coal Retires	Resource Strategies Tested	Key Sensitivities
1.0 Comparator	Equivalency GHG	Low Elec. Base DSM	2040	A - Current Landscape	
2.0 Net Zero 2050 Low Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	Low Elec. Base DSM	2040	A - Current Landscape C - Regional Integration	DSM Levels
2.1 Net Zero 2050 Mid Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	Mid Elec. Base DSM	2040	A - Current Landscape B - Distributed Resources C - Regional Integration	 DSM Levels No New Emitting Target Case for Sensitivity Evaluation
2.2 Net Zero 2050 High Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	High Elec. Max DSM	2040	A - Current Landscape C - Regional Integration	DSM LevelsNo New Emitting
3.1 Accelerated Net Zero 2045 Mid Electrification	GHG targets decline from 2025 to 0.5Mt in 2045; path to Absolute Zero 2050	Mid Elec. Base DSM	2030	B - Distributed Resources C - Regional Integration	 DSM Levels No New Emitting Target Case for Sensitivity Evaluation
3.2 Accelerated Net Zero 2045 High Electrification	GHG targets decline from 2025 to 0.5Mt in 2045; path to Absolute Zero 2050	High Elec. Max DSM	2030	B - Distributed Resources C - Regional Integration	DSM Levels

IRP MODELING PLAN

MODEL STATUS UPDATES

WORK COMPLETED TO DATE

- Final Assumptions have been entered into both RESOLVE and PLEXOS models
- Significant volume of test runs undertaking to confirm model functionality and optimize execution parameters
- Comparison of results between PLEXOS and RESOLVE has enabled detailed testing of both models – benefit of our parallel approach
- Focus of initial modeling has been on two key scenarios:
 - 1.0A Comparator Current Landscape
 - 2.1C Net Zero 2050 Regional Integration

INITIAL MODELING NOTES

- The quality of the PLEXOS LT model is sensitive to execution time; we are factoring this into our modeling plan
- Initial Portfolio Study runs (PLEXOS) and Resource Screening runs (RESOLVE) are now in progress

RESOURCE SCREENING UPDATE

The Resource Screening phase is designed to support key assumptions in the Initial Portfolio Study by testing key model assumptions.

- Using E3's RESOLVE model allows a sets of runs to be executed quickly due to the faster execution time of the model
- The methodology for screening is to do an "in-and-out" analysis of the resource being tested, and then to compare NPV RR across key scenarios
- Resources that screen "in" can be fixed in the PLEXOS model for the Initial Portfolio Study; this reduces the number of variables and improves execution time and solution quality for those runs

As part of the IRP, NS Power is undertaking 3 screening analyses:

- Diesel CT Screening
- Hydro Screening
- Carbon Price Screening

RESOLVE MODEL STRUCTURE

- + RESOLVE co-optimizes investments and operations to minimize total NPV of electric system cost
 - Investments and operations optimized in a <u>single stage</u>
 - Single-stage optimization directly captures linkages between investment decisions and system operations
 - Relies on hourly dispatch for a subset of representative days, with a parameterization of sub-hourly impacts

INITIAL PORTFOLIO STUDY UPDATE

- Initial Portfolio Study runs are currently underway
- To begin, focus has been on the 1.0A Comparator Current Landscape scenario
- The results on the following slides are preliminary and intended to provide a view of the modeling work completed to date to IRP participants
 - They are not considered final and are subject to be updated through the remainder of the IRP modeling phase

PRELIMINARY RESULTS PREVIEW: 1.0A COMPARATOR (CURRENT LANDSCAPE)

PRELIMINARY RESULTS PREVIEW: 1.0A COMPARATOR (CURRENT LANDSCAPE)

An Emera Compan

T&D AVOIDED COST METHODOLOGY UPDATE

NS Power's T&D Avoided Cost methodology will be reviewed during the 2020 IRP Process

BACKGROUND

- NS Power has calculated and provided Avoided T&D Costs as part of DSM Rate and Bill Impact Analysis (RBIA)
 processes since 2015. In order to develop Avoided T&D Costs, the Annual Capital Expenditure (ACE) Plans from
 2007 onward were used as the primary data source
 - Each ACE Plan was reviewed to break out the T&D capital investments by category (load growth, non-load growth, etc.)
 - Load growth investments were deemed to include any investment that enables additional load to be served by the transmission or distribution system (i.e. line rebuilds, feeder reconfigurations, reconductoring projects)
 - These investments provide additional T&D system capacity, often due to new construction standards and equipment capabilities, whether or not that incremental capacity is currently required based on the load forecast for that system
 - The costs of projects determined to be load growth-related (including carry-over) were then summed and used to create a ratio for total spend; this ratio was then applied to forecast future projected ACE Plan investments to calculate a forecast of future load growth-related investment on an annual basis going forward
 - This value was divided by the anticipated generation load forecast (firm peak) and the weighted investment/firm peak was then averaged to determine the values used in the RBIA calculations

T&D AVOIDED COST METHODOLOGY UPDATE

CONSIDERATIONS

- There is no universally accepted methodology for calculating Avoided T&D Costs
- A methodology which examines capital investments justified based on identified or forecast load growth (rather than capacity growth) could be appropriate when paired with forecast incremental firm peak load growth
- A new approach should also consider non-linear nature of T&D investments and fluctuations in load in a given year by considering averages over time
 - NS Power proposes to consider transmission-related investments against system-wide load growth
 - Where possible, NS Power proposes to consider distribution-related investments against local (i.e. substation level) load growth where the data is available and useable.
- It may be more accurate to consider the savings achieved via potential project deferrals, rather than avoided project costs, as the identified T&D investments will likely still be required at some point in the future
 - If Demand Side Management or other technologies can defer such investments forward to future years and achieve a net present value savings, value is achieved for NS Power customers

NEXT STEPS

• Further discussion will occur in parallel with IRP timeline, with the revision concluded by Sept. 15, 2020

NEXT STEPS

UPCOMING TERMS OF REFERENCE MILESTONES

Modeling Results circulated

• Draft Findings, Roadmap & Action Plan circulated

• Draft IRP Report circulated for comment

Final IRP Report filed

June 5 (workshop and stakeholder feedback cycle follows)

July 9 (workshop and stakeholder feedback cycle follows)

August 20

September 30

